Contents
What is a container
Docker and Apptainer
Building / Using Containers
GPUs
MPI
BioContainers

![Docker Logo](image)

![Apptainer Logo](image)
Why Use Containers?
• Verifiable reproducibility
• An immutable image
• Mobility of compute
• Limits user privileges
• Make use of GPU’s and high-speed networks
Docker vs Apptainer

Docker containers are very popular particularly in bioinformatics. Docker runtime is not secure on shared clusters. Create the container using Docker and then containerize with Apptainer. Note: Apptainer was rebranded from Singularity, but it is the same software.
Docker vs Apptainer

Apptainer has better security and performance
Where it runs
How it works

Container Creation

- `sudo singularity create container.img`

Import and Bootstrap

- `sudo singularity import container.img docker://ubuntu`
- `sudo singularity bootstrap container.img ubuntu.def`

Interact and Modify

- `sudo singularity shell --writable container.img`

Container Execution

- `singularity run container.img`
- `singularity shell container.img`
- `singularity exec container.img ...`

USER ENDPOINT

SHARED COMPUTATIONAL RESOURCE
Apptainer on HPC – Compute Node

laptop $ ssh netid@hpc.arizona.edu
netid@gatekeeper $ shell
(puma) netid@wentletrap $ elgato
(elgato) netid@wentletrap $ interactive –a PI
netid@cpu9 $ apptainer help
netid@cpu9 $ apptainer help build

https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/
Apptainer on HPC - Creating

$ apptainer pull docker://godlovedc/lolcow
 pulls from docker registry
 less reproducible – image can change

$ apptainer pull library://sylabsed/examples/lolcow
 pulls from a container library
 more reproducible

$ apptainer build lolcow.sif docker://godlovedc/lolcow
 more options
 converts to latest format
 needs a name

* Look for temporary files in ~/.apptainer
Apptainer on HPC - Running

$ apptainer shell lolcow_latest.sif
Apptainer>
Apptainer> exit

$ apptainer run lolcow_latest.sif
or
$./lolcow_latest.sif

$ apptainer run library://sylabsed/examples/lolcow
INFO: Using cached image

* Look for cached files in ~/.apptainer
Apptainer on HPC

SingularityHub for building containers
- developed by Vanessa Sochat at Stanford’s Research Computing Group
- supported by Google

It’s gone now..

So now what?
Build on HPC

Apptainer examples at our Github
https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/
Hello World Docker Build Tensorflow

Find the Basic Build Example
- use a recipe to build a container on HPC
- run the container using a Slurm script
Apptainer on HPC – Running Batch

#!/bin/bash
#SBATCH --job-name=lolcow
#SBATCH --ntasks=1
#SBATCH --nodes=1
#SBATCH --mem=1gb
#SBATCH --time=00:01:00
#SBATCH --partition=standard
#SBATCH --account=YOUR_GROUP

cd /path/to/container
apptainer run example.sif
Singularity on HPC – File paths

Access to your files outside the container: Binding
You automatically get /home and /tmp and $PWD

$ echo "Hello from inside the container" > $HOME/hostfile.txt
$ apptainer exec lolcow_latest.sif cat $HOME/hostfile.txt
Hello from inside the container

$ echo "Drink milk (and never eat hamburgers)." > data/cow_advice.txt
$ apptainer exec --bind data:/mnt lolcow_latest.sif cat /mnt/cow_advice.txt
or implement these general descriptions:
$ apptainer shell --bind /data my-container.sif
$ export APPTAINER_BINDPATH=/data
We show four ways to run tensorflow containers on HPC. We just use Tensorflow as an example

1. Containers as modules: caffe, pytorch, rapids, tensorflow and theano.
2. Tensorflow examples from our Github
3. Tensorflow directly from Nvidia
4. Tensorflow from Docker Hub
Apptainer fully supports using GPUs with the –nv flag. A collection of containers with GPU support are available that were pulled from Nvidia’s service called NGC. “module whatis tensorflow/nvidia”

tensorflow/nvidia/2.0.0 : Name: Tensorflow
tensorflow/nvidia/2.0.0 : Version: nvidia-tensorflow_2.0.0-py3
tensorflow/nvidia/2.0.0 : Description: 'tensorflow' is an alias for apptainer exec --nv /contrib/singularity/nvidia/nvidia-tensorflow_2.0.0-py3.sif python3'
tensorflow/nvidia/2.0.0 : Description: So typically 'tensorflow xxx.py'
Apptainer on HPC – Complex Example
Build Custom Tensorflow

https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/

Building a Tensorflow container with Cuda and Python 3.6

1. Identify which version of Tensorflow you need.
2. Identify a compatible version of Cuda.
3. Find a Cuda container on Docker Hub to bootstrap from.
4. Design your recipe.
5. Build!
GPUs and Containers

Apptainer Using SLURM

#!/bin/bash
#SBATCH --job-name apptainer-job
#SBATCH --account=your_pi
#SBATCH --partition=standard
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --gres=gpu:1
#SBATCH --time=01:00:00

cd /path/to/python/script
module load tensorflow/nvidia
tensorflow /contrib/singularity/nvidia/tensorflow_example.py
Github and Containers

Singularity Examples at our Github
https://ua-researchcomputing-hpc.github.io/Singularity-Examples/
Hello World Docker Remote Build Tensorflow

Run this command from your test directory to get the examples:
wget https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/Tensorflow-Example/Tensorflow-Example.tar.gz
tar zxvf Tensorflow-Example.tar.gz
Register with Nvidia at https://ngc.nvidia.com/signin
From an interactive session on a compute node in a subdirectory of /HOME:
(literally $HOME refers to /home/uxx/netid which are directories starting u and your netid)
$ singularity build tensorflow-20.08-tf2-py3.simg docker://nvcr.io/nvidia/tensorflow:20.08-tf2-py3

From the same /HOME subdirectory
$ cp /contrib/singularity/nvidia/TFlow_example.py . # Note the “.” at the end
$ CONTAINER=$HOME/tensorflow-20.08-tf2-py3.simg #optional – set the path of container
$ singularity exec --nv $CONTAINER python TFlow_example.py
Go to Docker Hub and review Tags and copy Pull Command
https://hub.docker.com/r/nvidia/cuda

Create a recipe file, and modify Pull command:
Bootstrap: docker
FROM: nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04

Create container:
singularity build tflow20.sif tflow20.recipe

Test:
$ singularity shell tflow20.sif
$ python3
>>> import tensorflow as tf
>>> tf.test.is_gpu_available()
... True
MPI and Containers

Singularity containers support MPI for multiple nodes
But the MPI type and version must match
The interconnect must match – infiniband or ethernet
Build the container with OpenMPI/3 or Intel/MPI
Using MPI reduces portability
sylabs.io/guides/ has a tutorial using MPI
BioContainers

A community driven project based on Docker focused on Proteomics and Genomics
A set of containers for the bioinformatics community
Specifications to build standardized containers
Guidelines for reproducible pipelines
Containers that can be pulled into Singularity for HPC use
BioContainers on GitHub

BioContainers / containers

Issues: 32
Pull requests: 5
Actions
Projects
Security
Insights

- **master**
- **1 branch**
- **1 tag**

Go to file
Code

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>abacas</td>
<td>Add debian package abacas/1.3.1-5-deb/Dockerfile</td>
<td>3 years ago</td>
</tr>
<tr>
<td>abyss</td>
<td>Add debian package abyss/2.1.5-7-deb/Dockerfile</td>
<td>3 years ago</td>
</tr>
<tr>
<td>acedb-other-belvu</td>
<td>Add debian package acedb-other-belvu/4.9.39dfsg.02-4-deb/Dockerfile</td>
<td>3 years ago</td>
</tr>
<tr>
<td>acedb-other-dotter</td>
<td>Add debian package acedb-other-dotter/4.9.39dfsg.02-4-deb/Dockerfile</td>
<td>3 years ago</td>
</tr>
<tr>
<td>acedb-other</td>
<td>Add debian package acedb-other/4.9.39dfsg.02-4-deb/Dockerfile</td>
<td>3 years ago</td>
</tr>
<tr>
<td>adapterremoval</td>
<td>Add debian package adapterremoval/2.2.3-1-deb/Dockerfile</td>
<td>3 years ago</td>
</tr>
</tbody>
</table>

[Image of GitHub page]
References

https://public.confluence.arizona.edu/display/UAHPC/Containers
https://ua-researchcomputing-hpc.github.io
https://hpc.nih.gov/apps/singularity.html
https://sylabs.io/guides/3.5/user-guide/introduction.html
https://github.com/sylabs/examples
https://www.tensorflow.org/tutorials/quickstart/beginner